Ⅰ 信用評分模型的信用評分模型
信用評分公司與信用管理局
● 在信用評分領域有兩個非常重要的方面:
客戶信用資料的收集:是指在信用消費中,通過調查了解申請授信的消費者個人的信用信息。
利用信用評分模型進行評分: 是指輸入客戶信用資料,通過信用評分模型得到客戶的信用分數,確定客戶的信用等級。
● 基於上述兩個重要方面,在信用評分發展過程中,逐漸產生了提供不同專業服務的公司:
信用評分專業公司: 它們主要根據業務需要開發各種不同的信用評分模型,將模型提供給商業銀行、貸款機構、電信公司、保險公司以及信用管理局等需要信用評分的公司。之所以有這 樣的專業公司存在,主要是因為每一家商業銀行、貸款機構的經營是不同的,從目標客戶的選擇到客戶服務的水平,即使在同一個城市裡,也會有差別,所以開發模 型所依賴的數據是不同的,信用評分模型也因此而各異。
信用管理局: 它們提供客戶的信用資料以及客戶的信用報告。信用管理局通過常年收集、積累數據,建立個人或企業信用資料資料庫,並向金融機構提供消費者個人信用有償調查 報告服務。信用管理局收集的客戶資料主要包括4個方面:身份信息,公共記錄,支付歷史和查詢記錄。信用局的基本工作就是收集個人或企業的信用記錄,建立完 善的數據管理中心,合法地向金融機構提供有償個人信用報告服務。
Ⅱ 如何查詢個人網貸綜合評分
「網貸綜合評分」簡單的來說,它是大數據風控系統對借款人資質條件所進行了一個綜合性量化評估。
查詢方式:
一、央行徵信查詢
為線上和線下兩種,第一種是攜帶好本人的身份證原件及復印件,前往周邊的央行徵信中心進行查詢。還有一種方法就是登陸中國人民銀行徵信中心官網,根據提示,輸入自己的姓名與度身份證號碼後,等待電子版的信用報告。徵信報告中會顯示出用戶過去5年的借貸平台,借貸金額,借貸期限,負面信息等數據內容。
二、網上系統查詢
現在有很多能提供網貸記錄查詢的網貸大數據系統,可以在微信查找:飛雨快查。可以查詢到網貸申請記錄,申請平台類型,是否逾期,逾期金額,信用卡與網貸授信預估額度等重要數據信息等。
Ⅲ 如何信貸審批線上做分析
線上線上信貸審批是指通過量化風險管理和自動化決策來實現。大概分為三個部分:
貸前營銷:1、已有客戶開發、新客戶開發;
2、預審批、申請評分;
3、預審批,客戶准入、預授信額度估算。
貸中審批:1、欺詐甄別、反欺詐監測;
2、申請再評分;
3、授信審批;
4、貸款定價。
貸後管理:1、行為評分模型;
2、額度管理;
3、風險預警、預催收;
4、催收評分、催收策略。
目前貸款審批線上速度實現了突破,貸款獲批率也得到了顯著提升,同一類用戶,用抵押物、收入流水證明等粗放式的傳統風控方式,貸款獲批率在15%左右,而使用大數據模型結合人工後獲批率可以達到30%以上。至於貸款的逾期率,以12個月違約風險舉例,通過神州融線上信貸審批模型篩選的用戶,逾期率比沒有經過篩選的低一半。
神州融是第一家在大數據風控系統上發力的互聯網金融企業,同時螞蟻金服旗下的芝麻信用、一些P2P網貸平台都在陸續開始研發大數據信用評估模型。
Ⅳ 什麼是信用評分模型
信用評分模型是近年來興起的一種為了保障銀行和其他金融部門的金融安全而設立的一種關於人身金融許可權的劃定模型。該模型指根據客戶的信用歷史資料,利用一定的信用評分模型,得到不同等級的信用分數,根據客戶的信用分數,來決定客戶所可以持有的金額許可權,從而保證還款等業務的安全性。而隨著在現代社會和公司中,貸款,信用卡的作用日漸突出,信用評分模型的發展前景不可估量。
Ⅳ 信用評分模型的信用評分的方法
利用數據挖掘技術構建信用評分模型一般可以分為10個步驟,它們分別是:業務目的確定、數據源識別、數據收集、數據選擇、數據質量審核、數據轉換、數據挖掘、結果解釋、應用建議和結果應用。這些可以形象地表示為(圖一):
1) 商業目標確定: 明確數據挖掘的目的或目標是成功完成任何數據挖掘項目的關鍵。例如,確定項目的目的是構建個人住房貸款的信用評分模型。
2) 確認數據源識別: 在給定數據挖掘商業目標的情況下,下一個步驟是尋找可以解決和回答商業問題的數據。構建信用評分模型所需要的是關於客戶的大量信息,應該盡量收集全面的信 息。所需要的數據可能是業務數據,可能是資料庫/數據倉庫中存儲的數據,也可能是外部數據。如果沒有所需的數據,那麼數據收集就是下一個必需的步驟。
3) 數據收集: 如果銀行內部不能滿足構建模型所需的數據,就需要從外部收集,主要是從專門收集人口統計數據、消費者信用歷史數據、地理變數、商業特徵和人口普查數據的企業購買得到。
4) 數據篩選: 對收集的數據進行篩選,為挖掘准備數據。在實際項目中,由於受到計算處理能力和項目期限的限制,在挖掘項目中想用到所有數據是不可能實現的。因此數據篩選是必不可少的。數據篩選考慮的因素包括數據樣本的大小和質量。
5) 數據質量檢測: 一旦數據被篩選出來,成功的數據挖掘的下一步是數據質量檢測和數據整合。目的就是提高篩選出來數據的質量。如果質量太低,就需要重新進行數據篩選。
6) 數據轉換: 在選擇並檢測了挖掘需要的數據、格式或變數後,在許多情況下數據轉換非常必要。數據挖掘項目中的特殊轉換方法取決於數據挖掘類型和數據挖掘工具。一旦數據轉換完成,即可開始挖掘工作。
7) 數據挖掘: 挖掘數據是所有數據挖掘項目中最核心的部分。在時間或其它相關條件(諸如軟體等)允許的情況下,最好能夠嘗試多種不同的挖掘技巧。因為使用越多的數據挖掘 技巧,可能就會解決越多的商業問題。而且使用多種不同的挖掘技巧可以對挖掘結果的質量進行檢測。例如:在構建信用評分模型時,分類可以通過三種方法來實 現:決策樹,神經分類和邏輯回歸,每一種方法都可能產生出不同的結果。如果多個不同方法生成的結果都相近或相同,那麼挖掘結果是很穩定、可用度非常高的。 如果得到的結果不同,在使用結果制定決策前必須查證問題所在。
8) 結果解釋: 數據挖掘之後,應該根據零售貸款業務情況、數據挖掘目標和商業目的來評估和解釋挖掘的結果。
9) 應用建議:數據挖掘關鍵問題,是如何把分析結果即信用評分模型轉化為商業利潤。
10) 結果應用:通過數據挖掘技術構建的信用評分模型,有助於銀行決策層了解整體風險分布情況,為風險管理提供基礎。當然,其最直接的應用就是將信用評分模型反饋到銀行的業務操作系統,指導零售信貸業務操作。 數 據挖掘方法可以依據其功能被分成4組:預估模型、分類、鏈接分析和時間序列預測。每一項功能都可以被開發和修改成為適應不同業務的應用。比如: 分類模型可以被運用到建立信用風險評分模型、信用風險評級模型、流失模型、欺詐預測模型和破產模型等。為實現數據挖掘的每一項功能,有許多不同的方法或算 法可以使用。
本文所討論的信用風險評分模型主要是屬於分類模型,所以用到的方法主要有分類分析和分割分析。分類分析主要方法包括:決策樹、神經網路、區別分析、邏輯回歸、概率回歸;分割分析主要方法包括:K-平均值、人口統計分割、神經網路分割。
Ⅵ 個人信用評分通常以借款人的什麼等特徵指標為解釋變數
個人信用評分通常以借款人的是以
【過去還款情況】等特徵指標為解釋變數。
其它概念:1.個人信用評分--指信用評估機構利用信用評分模型對消費者個人信用信息進行量化分析,以分值形式表述。
2.它被分為:風險評分、收入評分、響應度評分、客戶流失(忠誠度)評分、催收評分、信用卡發卡審核評分、房屋按揭貸款發放審核評分、信用額度核定評分等。
Ⅶ 信用綜合評分不足,那個軟體可以貸款下來
若您已是招行用戶,並且下載了招商銀行手機銀行APP,您可以嘗試通過登錄手機銀行,首頁-借錢操作界面看一下是否有適合您的產品,如:貸款1萬以下金額的「招聯好期貸」;另外,手機銀行-我的一卡通-貸款管理-我的閃電貸/網上銀行-貸款管理-閃電貸,您也可以看下是否能辦理。